
Introduction, Search Algorithms,
Classification with Decision Trees and

Performance Metrics

MACHINE INTELLIGENCE

UNIT -1

feedback/corrections : vibha@pesu.pes.edu - VIBHAMASTI
© vibha’s notes 2021

COMPARISON
FACTORS

ARTIFICIAL INTELLIGENCE HUMAN INTELLIGENCE

NATURE Aims to build machines that
can mimic human behavior
and perform human-like
actions.

Aims to adapt to new environments
by utilizing a combination of
different cognitive processes,

FUNCTIONING AI-powered machines rely on
data and specific instructions
fed into the system.

Use the brain’s computing power,
memory, and ability to think,

LEARNING
POWER

Learn from data and through
continuous training, but they
can never achieve the thought
process unique to humans

It is all about learning from various
incidents and past experiences. It
is about learning from mistakes
made via trial-and-error approach
throughout one’s life.

FOUR CATEGORIES VIEW OF AI

understand Turing test minnick

human
how humans

Thinkingthink Acting behaviour

humanly humanly (Turing test)

Thinking Acting mathematical

rationally rationally models

laws of best
thought outcome

Levels OF AI

lil Narrow AI : performs specific task where machine can perform
better than humans

cii) General AI : AI at a general state where it can perform
any intellectual task with the same level of accuracy as humans

Liii) Super AI : AI that always beats humans in tasks

AI vs Human Intelligence

© vibha’s notes 2021

PTE ML Model

• (P
,
T
,
E> three triple

• Task T
• Performance measure P

•

Training experience E

•

Example 1 checkers learning program
- T : playing checkers
- P : percent of games won

- E : playing practice games against itself

☐ Example 2 handwriting recognition
- T : recognising handwritten characters
-

P : percent of characters recognised correctly
- E : identifying characters from a large database

predict songs that a user will like

^

y
unknown @

• lines

soaring I •
•

•

intensity •
•

• • dislikes

light •
•

relaxed fast
>

tempo

© vibha’s notes 2021

Q: Identify Task CT)
, Training Experience (E) and Performance

Measure CP) for the following .

1. learning to play checkers

T : Learning to play checkers

E : No
. of games played against itself (practice>

P : No . of games won

2. Handwriting Recognition Learning Problem

T: convert a handwriting image to text

E : Images of characters studied cdatabase)

P : Accuracy 1% correct words)

3. Self - driven cars

T : To drive a car using only sensors
E : sequence of images and driving / steering instructions
P : Avg . distance travelled before error is made

4. Text categorisation

T : Assign document to a given category
E : Database of pre -classified document

P : Fraction of documents correctly tagged

© vibha’s notes 2021

AGENTS in Al

°

Agent perceives the environment 's state and takes actions based

on the state

• Perceives through sensors

° Makes decisions using Al
, using percept history and past

actions

percepts

environment agent
^

action

°

Intelligent agents learn from environment and act upon it

- Eg: AI assistants , chess bots

• Rational agents perform the tasks in the most optimal manner
and has a clear preference Cdeterministic)
-

Eg: temperature sensors

PEAS model for AI Agents

• (P
,
E
,
A
,
S ? four tuple

• Performance measure P : unit of success

Environment E : surroundings of agent
Actuator A : delivers agent 's output
sensors : takes in input

• Textbook uses PAGE (goal) instead
© vibha’s notes 2021

• Example 1 self-driving car

- P : safety , speed , violations
- E : roads

,
obstacles

, signs
- A : mechanical parts of car
- S : IR sensors

,
camera

TYPES of ENVIRONMENTS

1. Observability
2. Determinism

3. Episodicity
4. Dynamism
5. Continuity

1. Observability
is Fully observable : agent 's sensors give it access to the complete
state of the environment

- Eg : crosswords , Sudoku , 8-puzzle problem
d- is Partially observable : entire state of environment not visible through

sensors

-

Eg: autonomous driving

2. Determinism

is Deterministic : current state of agent 4 action can determine

next state

- Eg : state of chess board after making a move

di) stochastic : random environment ; not deterministic
-

Eg: poker

3. Episodicity
d) Episodic : agent's experience divided into atomic episodes where

actions in each episode depend only on the episode
- Eg: spam filter where each mail is an episode

© vibha’s notes 2021

errors in diff stages (episodes of assembly line) -defects

cii) sequential: next state dependent on current action
-

Eg: chess moves in a single game

4. Dynamism
d) static : idle environment with no change in state between actions

- Eg: snakes and ladders

di> Dynamic : environment can change when the agent is

deliberating
- Eg: driving , tennis

5. continuity
d) Discrete : environment has finite number of actions

- Eg : chess , snakes and ladders

cii) continuous : infinite number of actions
- Eg: tennis , driving

classes of Intelligent Agents

i. Simple reflex agents
- uses simple conditional statements to make decisions

- fully observable agents
-

eg: temperature sensor
, light sensor

,
metal detector

© vibha’s notes 2021

def simple_reflex_agent(percept):

 state = get_state_from_percept(percept)

 rule = match_rule(state, rules)

 action = rule.Action

 return action

def model_based_reflex_agent(percept):

 state = update_state(state, action, percept)

 rule = match_rule(state, rules)

 action = rule.Action

 return action

• A simple-reflex agent selects actions based on the agent’s current
perception of the world and not based on past perceptions

• A model-based-reflex agent is made to deal with partial
accessibility; they do this by keeping track of the part of the
world it can see now. It does this by keeping an internal state that
depends on what it has seen before so it holds information on the
unobserved aspects of the current state.

• The former only base its analysis on current states while the latter
takes account of past events

2. Model-based agents
-

perceives and takes action based on experience Chistory)
- can work in partially observable environment
-

eg: self-driving car

Simple Reflex Agent vs Model -Based Reflex Agent

© vibha’s notes 2021

function MODEL-GOAL-BASED-AGENT(percept) returns an action

state: what the current agent sees as the world state
model: a description detailing how the next state is a result of the
current state and action.
goals: a set of goals the agent needs to accomplish
action: the action that most recently occurred and is initially null

state = UPDATE-STATE(state, action, percept, model)
action = BEST-ACTION(goals, state)
return action

3. Goal- based agents
- experience 4 goal fed into agent
-

eg: max shopping with min cost
, Google 's Waymo driverless

Pseudocode

4. Utility agents
- if the actions taken to reach the goal make the user happy
-

eg: route recommendation system that changes dynamically
(if problems occur)

© vibha’s notes 2021

5. Learning agents
- critics give feedback to learning agents
- effectors instead of actuators
- problem generator suggests actions

- performance elements responsible for selecting external

action
-

eg: Google Assistant , computer vision , search engines

© vibha’s notes 2021

Applications of Learning Agents

• Agents in uncertain environments

• Humans are tearing agents

• search engines

• computer vision

° Recognition of gestures

Search PROBLEMS

• Agent is given an initial state and a goal state

° Returns solution of how to get from initial state to goal state

1 . Agent
• entity that perceives environment and acts upon the environment

°

can be function (abstract mathematical description) or a

program (concrete implementation)

2. State

• configuration of the agent and its environment

3- Initial state

• initial configuration of environment

4. Actions

• choices that can be made in a state
© vibha’s notes 2021

° action (s) returns set of actions that can be executed in

state s

5. Transition model

° TCS
,
a) → s

'

6. State Space
• set of all states reachable from initial state by any
sequence of actions

• tree or graph

7. Goal test

• determine if given state is goal state

© vibha’s notes 2021

8. Path cost

• numerical cost associated with a given path

Formalising a search Problem

i. Initial state

2. Action

3. Transition model

4. Goal test

5. Path cost

Frontiers
° Data structure that supports the task

° Stack or queue

Analyse

1. 8 Puzzle Problem Coptimal solution- NP hard)

state : tile locations

initial state : specific tile config
actions : move blank tile left

,

right , up , down
goal test : tiles are in goal
config
path cost : 1 per move

2. Rubik's Cube

State : colours on each face

initial state : specific cube config
actions : rotate a column or a

face

goal test : same colour on face

path cost : 1 per move
© vibha’s notes 2021

3. 8 Queens Problem

State : configuration of queens
initial state : empty board
actions : add a queen to the

board

goal test : solution to 8-queens

problem Cno attacks)

path cost : time taken to solve

NODE in SEARCH TREE

• Each node : n

1. n. STATE
- state in the state space

2. n . PARENT
- node that generated n

© vibha’s notes 2021

function TREE-SEARCH(problem):
frontier.add(problem.INITIAL_STATE)
repeat:

 if the frontier is empty:
return no solution

 else:
node = frontier.remove_node()
if node is a goal state:

return the solution
else:

expand node, add neighbour nodes to the frontier

3. n . ACTION
- action applied by parent to generate n

4- n . PATH- COST
- gcn)
- cost from initial state to the node

search strategies

initial state

take
actions

get more
states to

explore

Frontier

• Data structure to store states to be explored
• Could be stack

, queue , priority queue
• Frontier initially stores only the initial state

Tree - Search (general algorithm

© vibha’s notes 2021

Problems with tree search

• No visited array / storage of history

• Solution: use explored set Cclosed set) that remembers every
expanded node

Parameters to Define a Good strategy

1. completeness does it always find solution if it exists?
2. Time complexity number of nodes generated
3. Space complexity Max no. Of nodes in memory
4. Optimality does it always find least cost solution?

Max no . of children

* time Ee space complexity at each node

s
o b: maximum branching factor of search tree
• d : depth of least- cost solution

•

m : maximum depth of state space could be a)

© vibha’s notes 2021

1. Uninformed search
° blind search
•

only use information available in the problem definition
°

generate successors and distinguish goal state from non - goal
state

2. Informed search
° heuristic search

• know whether one goal state is better than another

• greedy best search first

© vibha’s notes 2021

function BFS(problem)
node = a node with STATE = problem.INITIAL_STATE, PATH_COST = 0

if node.STATE == problem.GOAL_STATE then
return SOLUTION(node)

end if

frontier = FIFO queue with node as the only element
explored = empty set

while frontier is not empty:
node = POP(frontier)
add node.STATE to explored

for all edges from node.STATE to neighbour in ADJ_EDGES(node.STATE) do
if neighbour.STATE not in explored and not in frontier then

if neighbour.STATE == problem.GOAL_STATE then
return SOLUTION(neighbour)

end if
frontier.insert(neighbour)

end if
end for

end while
end function

Uninformed search strategy

1. Breadth First search
• Frontier : queue
• Applications: P2P Networks, web crawlers

, navigation systems,
network broadcasting

I
1. Completeness : yes (finite graphs)
2. Time complexity : ocbd)

L ✓

2 > 3
3 . Space complexity : ocbd) and ocbd-1)
4. Optimality : no j t

queue
explored

L v v ✓

4 5 6 7

goal
state

© vibha’s notes 2021

Time complexity

space complexity

useful
• Infinite paths
• space available
• Bad when heuristic knowledge present

- P2P networks
- web crawlers
- nav systems
- net broadcasting

© vibha’s notes 2021

function DFS(problem)
node = a node with STATE = problem.INITIAL_STATE, PATH_COST = 0

if node.STATE == problem.GOAL_STATE then
return SOLUTION(node)

end if

frontier = stack with node as the only element
explored = empty set

while frontier is not empty:
node = POP(frontier)
add node.STATE to explored

if node.STATE == problem.GOAL_STATE then
return SOLUTION(node)

end if

for all edges from node.STATE to neighbour in ADJ_EDGES(node.STATE) do
if neighbour.STATE not in explored and not in frontier then

frontier.insert(neighbour)
end if

end for
end while

end function

2. Depth First search tree search (no explored set)
1. Completeness : no

• Frontier : stack 2. Time complexity : Space state size
3. Space complexity : Olbm)

I
4. Optimality : no

L ✓

2 > 3
Graph search Cexplored set)
1. Completeness : yes

L v v ✓ 2. Time complexity : Olbm)
4 5 6 7

3 . Space complexity : Olbm)
4. Optimality : no

goal
state

© vibha’s notes 2021

function UNIFORM_COST_SEARCH(problem)
 node = a node with STATE = problem.INITIAL_STATE, PATH_COST = 0

 if node.STATE == problem.GOAL_STATE then
 return SOLUTION(node)
 end if

 frontier = priority queue with key as PATH_COST and node is the only element
 explored = empty set

 while frontier is not empty:
 node = POP(frontier)
 add node.STATE to explored

 if node.STATE == problem.GOAL_STATE then
 return SOLUTION(node)
 end if

 for all edges from node.STATE to neighbour in ADJ_EDGES(node.STATE) do
 if neighbour.STATE not in explored and not in frontier then
 frontier.insert(neighbour)
 else if (
 neighbour.STATE in frontier with PATH_COST higher than node.PATH_COST +
 problem.COST(node, neighbour)
) then
 frontier.replace_priority(neighbour, node.PATH_COST + problem.COST(node, neighbour))
 end if
 end for
 end while

 return FAILURE

end function

3. Uniform Cost Search

• Extension of BFS when graph is weighted
• Expands node n with lowest path Lost gln)
• Frontier : priority queue with key

-
- gcn)

° Path to goal node with lowest cumulative cost

• Dijkstra's algorithm
I

5
1. Completeness : yes

s
<

'

,
D 2. Time complexity :

T 6
of b'

+ [CHE])5 ^ 2

2
a 9

a 4,2 ✓ 9 3 . Space complexity :
A 3 ✓

3 of b'
+ [CHE])

r s

B
,
C E

2
I 2 4. Optimality : yes

q
7

y
5 ✓

C : cost of optimal Sol8
f

8 ✓ to E : cost of each step6 ✓

7
,

↳I
>

Gz
that gets you closer

62 to goal

© vibha’s notes 2021

Q : Find optimal path cost to goal node H

1. visited :

queue : CAIO)
distances : CA

,
07

,
CB

,
a)

,
(C)a)

, (D)
a)

,
CE

,
A)

,

(F) a)
,
(G)a) , CH , a)

previous : CA
,
-7

,
CB

,
-)

,
CC
, -)

,
CD
,
-
)
,
CE

,
-7

,

CF
,
-)

,
(G ,-7 ,

CH
,
-7

2. visited : A

queue : CC , 37 , (B) 7)
distances : CA , 07 , CB , >) , (C)3) , (D)

a)
,
CE

,
A)

(F) a)
,
(G)a) , CH , a)

previous : CA
,
-7

,
CB

,
A)

,
(C) A)

,
CD
,
-
)
,
CE

,
-7

,

(F) -)
,
(G ,-7 ,

(H
,
-7

3. visited : A
,
C

queue : (13,5) , (D)22)
distances : CA , 0) ,

CB
,
5)

,
(C)3)

,
(13,22) , CE , A)

(F) a)
,
(G)a)

,
CH
,
a)

previous : CA
,
-7

,
CB

,
c)

,
(C) A)

, (D)c) , CE , -7 ,
CF
,
-)

,
(G ,-7 , CH , -)

4. visited : A
,
C
,
B

queue : CE
,
117

, (D)22)
distances : CA , 0) , CB ,5) , (C)3) , (13,22

)
,
CE

,
11)

(F) a)
,
(G)a) , CH , a)

previous : CA
,
-7

,
CB

,
c)

,
(C) A)

,
CD
,
C)

,
CE

,
B)

,

(F) -)
,
(G ,-7 ,

CH
,
-7

© vibha’s notes 2021

5. visited : A
,
C
,
B
,
E

queue : (G)127 , CF 13) , (D) 14)
distances : CA , 07 , CB ,5) , (C)3) , (D)14

)
,
CE

,
11)

(F) 13)
,
(Gp2) , (Hir)

previous : CA
,
-7

,
CB

,
c)

,
(C) A)

, (D)E) , CE , B) ,
(F) E)

,
(G)E) , IH, -7

6. visited : A
,
C
,
B
,
E
,
G

queue : CF 137
,
(D
,
147

distances : CA , 0) , CB ,5) , (C)3) , (D) 14
)
,
CE

,
11)

(F) 13)
,
(G) 12) , (H >

A)

previous : CA
,
-7

,
CB

,
c)

,
(C) A)

, (D)E) , CE , B) ,
(F) E)

,
(G)E) , (H , -7

7. visited : A
,
C
,
B
,
E
,
G
,

F

queue : (D) 14)
distances : CA , 07 , CB ,5) , (C)3) , (D) 14) ,

CE
,
11)

(F) 13)
,
(G) 12)

,
(H
,
a)

previous : CA
,
-7

,
CB

,
c)

,
(C) A)

, (D)E) , CE , B) ,
(F) E)

,
(G)E) , (H, -7

8. visited : A
,
C
,
B
,
E
,
G
,

F
,
D

queue : (1-1,27)
distances : CA , 0) , CB ,5) , (C)3) , (D)14

)
,
CE

, 11)

(F) 13)
,
(G) 12) , (1-1,27)

previous : CA
,
-7

,
CB

,
c)

,
(C) A)

, (D)E) , CE , B) ,
(F) E)

,
(G)E) , (H , D)

Optimal path : A -7C → B→ E- → ☐ → H

Optimal cost : 27

© vibha’s notes 2021

Q : Find optimal path cost to goal G from S

S
'

> A
3

> c

4
v2

pg

L F <
6

D

u

5

3 E

5
s

g
k 5

prev : Cs , None) , (A) 5) , CB ,S)

Dist : CS , 07 , (A) 1) , (B)4)

PQ : CA
,
1)
,
(B)4)

vis : S

prev : CS >None) , CA , 5) , CB > 5) , (D)A) , CC >A)
dist : (5) 0)

,
(A) 1)

,
CB

>
4)
,
(D)37 > (C) 4)

PQ : (D)3) , (B) 47 , (C)4)
vis : S

,
A

prev : CS >None) , (A)5) , CB>5) , (D)A) , CC> A),
(f) D) , (G) D)

dist : Cs
>
07
, (A) 17 , (B)4) , (D)3,7 , (C) 47 ,

(F) 9) , (G) 6)
PQ : CB

>
4)
, (C) 4) , (G) 6) , (F) 9)

vis : S
,
A
,
D

© vibha’s notes 2021

prev : CS >None) , (A)5) , CB> S) , (D)A) , CC> A),
(F) D) , (G) D) ,

Dist : CS
>
07
, (A) 17,113,47 , (D)3,7 , (C) 47 ,

(F) 97 , (G) 6)
PQ : (C) 4) , (G) 6) , (F) 9)
vis : S

,
A
>
D
,
B

prev : CS >None) , (A)5) , CB> S) , (D)A) , CC> A),
(F) D) , (G) D) ,

Dist : CS
>
07
, (A) 17,113,47 , (D)3,7 , (C) 47 ,

(F) 97 , (G) 6) , (E) 9)
PQ : (G) 6)

,
(F) 9) , (E)9)

vis : S
,
A
>
D
,
B
,
C

prev : CS >None) , (A)5) , (B)S) , (D)A) , CC> A),
(f) D) , (G) D) ,

Dist : CS
>
07
, (A) 17,113,47 , (D)3,7 , (C) 47 ,

(F) 97 , (G) 6) , (E) 9)
PQ : (F) 9) , (E)9)
vis : S

,
A
>
D
,
B
,
C ,G

cost to goal 4=6

Path : s → A → D → G

© vibha’s notes 2021

Informed search strategy

• search algorithm with information on the goal state that helps
in efficient searching

• Information in function fcn) estimates how close the node

is to a goal state gives out a positive number

HEURISTIC FUNCTION hln)

• hln) is an estimated cost of the cheapest path from the

node n to a goal state

• If hitch) is the actual cheapest cost of the path from

node n to a goal state , then

hln) C- h*Cn)

• In other words
,
hcn) can never overestimate the cost to

the goal nodes

• If n is a goal node , hcn) = 0

• Heuristic function must be designed / chosen smartly ;
eg: Euclidean distance

• Two algorithms for us to study

1. Best First Search

• Improved version of UCS

• Greedy strategy (no backtracking ; irrevocable) © vibha’s notes 2021

•

Greedy fails in giving us the optimal solution

Arad → Bucharest

(T1)

0

0 min

0 to
min

✓ ←
greedy

0

optiniai

☐

goal

goalI

←

"

§,
min

☐ o
" §-c§→min

• Path chosen is not optimal and can be incomplete if

there is no check for infinite 100ps

• Ocbm) space 4 time
© vibha’s notes 2021

Iasi → Fagaras (tree search - no visited)

0
goal 0
0 0

. Stuck in a loop (Iasi → Neamt → Iasi - . .)
- Incomplete in finite space

Iasi → Fagaras
' complete in finite state space
• Incomplete in infinite

1. Completeness : no
2. Time complexity : Olbm) improvement with good hln)
3. Space complexity : Olbm) all nodes in memory for hln)
4. Optimality : no

© vibha’s notes 2021

2. A* search

• Heuristic function gives estimate of minimum cost between

the node and a goal state

• A-* algorithm combines the Heuristic function hcn) with the

actual cost from start node to the node n
,
called gcn?

to select the next node to travel to fcn)

fcn) = gcn) -1 hcn)

• Enhancement to Best First search to attain optimal
solution

conditions for optimality

1. Admissibility

• him should be an admissible heuristic ; it never

overestimates the path cost

•
.

'

.
fcn) never overestimates path cost

•

eg: hsu,
- straight line distance

2. Consistency /Monotone

ccn,a,n
')
.

n

t

n
' 1

I hln) (triangleneighbour "
-

-
,

,

,

'

,

: inequality)
hcn ') -

-
.

goal state
G

© vibha’s notes 2021

• hln) I ccn
,
a
,
n
') -1 hcn')

Example I
5

I

s < D

5
r 6

> 6

5 ^ 2

2 9 4 2

A
<

3 ✓
3

6

c

L VE
9

7 r - B >
4 5

2 3
I 2

q
7

y
5 ✓

8 F

6 v

y
7 8 ✓ 10

↳I L > G3

0 62 0

0

i. Priority queue :

-5
Preus :

S A B C D E F G1 GZ 43

2. Priority queue : visited :

D S

12 12 12
© vibha’s notes 2021

Preus :

S A B C D E F G1 GZ 43
s s s

3. Priority queue : visited :

£41 S
,
A

11 12 14

Preus :

S A B C D E F G1 GZ 43
S A S A

4. Priority queue : visited :

_ S
,
A ,B

12 13 14

Preus :

S A B C D E F G1 GZ 43
S A B S A

5. Priority queue : visited :

£561 S
,
A

,
B
,
D

12 13 14

Preus :

S A B C D E F G1 GZ 43
S A D S D A

© vibha’s notes 2021

6. Priority queue : visited :

fits ,
A
,
B
,
D
,
C

Preus :

S A B C D E F G1 GZ 43
S A D S D C A C

7. Priority queue : visited :

_%¥j S
,
A
,
B
,
D
,
C
,
E

Preus :

S A B C D E F G1 GZ 43
S A D S D C A C E

8. Priority queue : visited :

2Gt14 15 22

Si A , B , D , C , E ,G2

Preus :

S A B C D E F G1 GZ 43
S A D S D C A C

Optimal path : s→D→c→G2
© vibha’s notes 2021

Heuristic Function Design

• A good Heuristic function is crucial in determining efficiency
of A

't

algorithm

• 8- puzzle : a bad Heuristic is no . of displaced tiles (tiles not

on final tile spot) ; maxes at 8

• Manhattan distance : sum of distances from each tile to its

final state

- Eg : 8- puzzle

÷
0

↳

ha) =3

hlz) =/

v37
-

-2 hcs) = E hci) = 18

hl4)=2

hC5)=2
hCG)=3
h(7) =3

hC8)=2

• Must take into account effort involved in calculating
hcn)

© vibha’s notes 2021

h = abs (current_cell.x – goal.x) + abs (current_cell.y – goal.y)

h = sqrt((current_cell.x - goal.x)^2 + (current_cell.y - goal.y)^2)

• Eg : find path from start state to goal state in the given
maze

source : geeks for geeks

manhattan Distance

Euclidean Distance

© vibha’s notes 2021

Machine learning

7-Step Procedure of Machine learning

source : towards data science

© vibha’s notes 2021

Machine learning Models

1. Supervised learning
• classification algorithms CKNN is supervised?
• Regression

2. Unsupervised learning
•

Clustering algorithms

3. Reinforcement learning
• Policy-based or value - based
• Agent- environment interface

© vibha’s notes 2021

Comparison Table

Criteria Supervised ML
Unsupervised
ML

Reinforcement
ML

Definition
Learns by using
labelled data

Trained using
unlabelled data
without any
guidance.

Works on
interacting with
the environment

Type of data Labelled data Unlabelled data
No – predefined
data

Type of
problems

Regression and
classification

Association and
Clustering

Exploitation or
Exploration

Supervision
Extra
supervision

No supervision No supervision

Algorithms

Linear
Regression,
Logistic
Regression,
SVM, KNN etc.

K – Means,
C – Means,
Apriori

Q – Learning,
SARSA

Aim
Calculate
outcomes

Discover
underlying
patterns

Learn a series
of action

Application
Risk Evaluation,
Forecast Sales

Recommendatio
n System,
Anomaly
Detection

Self Driving
Cars, Gaming,
Healthcare

https://www.aitude.com/supervised-vs-unsupervised-vs-reinforcement/

COMPARISON TABLE

© vibha’s notes 2021

concept learning

• Attributes describe a concept

• Use data to teach a machine to solve binary classification
problem

Attribute A
,

Attribute Az concept C- yes /no

circle oval dark light

1 0 1 0

Possible instances = 2×2=4 = 1A
, I ✗ IAN

Attribute A
,

Attribute Az

0 0

0 I } instance

spaceI 0

= 4
I 1

concept

concept space - Power set

yes
00 I

no } 2×2
01

. 2 = 16
10

'

.

11 '

= c
/All ✗ / Az /

© vibha’s notes 2021

More Attributes G Concepts

Attribute A
,

Attribute Az Attribute Az Concept C

C 0 R
y B

A B Y
N

M

Instance space = 2×3×2 = 12

concept space = 312--5314412 500,000

• Grows exponentially

• Reduce the part of concept space to define and train

the model

° Use logical operators to club attributes together and
eliminate concepts

° Inductive bias : assumptions made to reduce concept

space conjunctive concepts)

°

Hypothesis : can be represented syntactically or semantically

INDUCTIVE BIAS

• Fundamental set of assumptions that the learner makes

about the target function

• Allows learner to generalise beyond training data

© vibha’s notes 2021

Find S Algorithm

• Finds most specific hypothesis that fits all positive samples

• Considers only positive training examples

• starts with most specific hypothesis and generalists this
hypothesis each time it fails to classify positive training
data (using logical AND)

• Assumes binary attributes

• Don't cares (?) introduced when two instances with opposing
attributes found [accept all)

° Assume initial hypothesis is < § ^ Of ^ - . - ^0> for all
attributes (most specific)

• The most general hypothesis is < ? ^ ? ^ . . -

^ ? >

• 01 indicates no value is acceptable (reject all)

Example : Find hypothesis using Find S Algorithm

Example citations size in Library Price Editions Buy
1 Some small no affordable many no

2 many big no expensive one yes
3 Some big always expensive few no

4 many medium no expensive many yes
5 many small no affordable many yes

d) Initial instance space = 2 ✗ 3×2×2×3=72

Ciii Initial concept space = 272 = 4.7×1021 © vibha’s notes 2021

i. Start with specific hypothesis H= < 10 , 01,01 , 10,10>
2. Ignore eg # I
3- H= <many , big , no , expensive, one>
4. Ignore eg #3
5. H -

- (many , ? ,
no
, expensive, ? >

6. H= (many , ? ,
no
,
?
,
? >

Ciii) New concept space

• 3 possible values for every attribute (two binary and one

don't care - ?) + 1 initial reject- all hypothesis <0,0 . . . 0 >

5
• Concept space = 3 + I = 243+1=244 (semantic)

•

concept space reduced from 4-7×102 ' to 243

HYPOTHESIS SPACE

• conjunctive concept space / shrunken concept space is called
hypothesis space

• Syntactically distinct HS : add 2 wild card possibilities
for each attribute ?

>
0

- however
,
if one attribute is 0

,
the whole hyp

is 0
- semantically distinct HS needed

• Semantically distinct HS : add 1 wild card ? and

one separate empty set cot , . . .

> 0>

© vibha’s notes 2021

VERSION SPACE

•

Hypothesis is said to be consistent with respect to the

training dataset if it correctly classifies all training
examples

• For a hypothesis h and a point xi in D with a true
train

classification of Cali)
,

hail = ccxi) f ki c- D
train

• Version space vs is a subset of Hypothesis space H such

that vs contains all the hypotheses consistent with Dwain

vs = { h : h C- H and h is consistent with ☐

train
}

Limitations OF Finds

• No way to determine if hypothesis is consisent throughout
training examples

• Once ? introduced
, all further info lost on that attribute

• No negative examples are taken into account

candidate Elimination - Not in syllabus

• Consider both + and - samples

• Two hypotheses : General (G) and specific (s)

© vibha’s notes 2021

- ↳ = ?
^

?
^

- -
.
^ ?

. 5=01^0 ^
. . .

^ 0

• For every + training example, modify the specific hypothesis
S Cjust like in Finds) by making it more general

- For every - training example , modify the general hypothesis
↳ to make it more specific

© vibha’s notes 2021

performance metrics

confusion matrix

•

Binary classification model : 2×2 matrix

Predictions

+ve - ve

+ve
true false

+ve - ve

Actuals

false true
-ve

+ve
-ve

Example

Find # of TP
,
TN
,
FP

,
FN cases where blue is tire and red

is -ve

Prediction
•

•
•

+ve - ve

•

.

• •

•

•

we
TP FN

• 6 I
• •

•

•
Data

FP TN
-ve

2 5

• FP : type 1 error

• FN : type 2 error

© vibha’s notes 2021

Accuracy

accuracy = TP + TN

TP + TN + FPTFN

•

Accuracy is a good measure when the target variable
classes are neatly balanced

• If samples are majorly leaning towards one side ceg: 99-1 .

of emails received are spam> ,
the model might always

predict one outcome while retaining a high accuracy

Example

Find accuracy where blue is tire and red is -ve

Prediction
•

•
•

+ve - ve

• • •

•

•

TP FN
• tve

• 6 I
• •

•

•
Data

FP TN
-ve

2 5

accuracy: 6-5-1 -

- ÷6-151-2-11

© vibha’s notes 2021

Precision

° Correct positive cases out of predicted positive cases

precision = TP

TP + FP

Recall

• How many +ve cases caught (sensitivity) ; not missed
• True positive rate

recall = TP

TP + FN

• Model that always predicts tve has a recall of 100-1 . even

though it is not a good model

specificity

• How many
- ve cases caught ; not missed

specificity -- TN = I - FPR

TNTFP

f-1- Score

. Harmonic mean of precision and recall

F1 score = 2 ✗ recall ✗ precision
recall + precision

•

Higher score → better co is worst
,
I is best)

• Only if precision and recall are 100%
,
1=1--1

© vibha’s notes 2021

• Harmonic mean

n=?¥y

d- = ⇒ = :(÷ +;-)
2xy

• Geometric mean

a- Fy

µ2= Ny

Recall 4 Precision

© vibha’s notes 2021

Q : Find precision , recall , F1 score

Prediction

(G) NC C-)

Clt) 3 97

Actual

Nct) 0 0

P=TP_ = 3-3=1001 . R=TP_ = ¥g =3 't
TPTFP TPTFN

f- I score = 2×1×0.03 = 5.83-1.
I -03

© vibha’s notes 2021

Q : Find recall : how many patients diagnosed as sick correctly?

Diagnosis

sick Healthy
sick 1000 200

Patients

Healthy 800 8000

TP = 1000 FP = 800

TN = 8000 FN = 200

Recall = true +ve rate = TP
¥N

= 83.33.1.

0 : Find recall where blue is tire and red is -ve

Prediction
•

•
•

+ve - ve

•

.

• •

•

•

we
TP FN

• 6 I
• •

•

•
Data

FP TN
-ve

2 5

recall = g- = 85-71-1 .

© vibha’s notes 2021

Confusion Matrix

Multi -Class confusion matrix

• Diagonal : true +ve for each of the classes

© vibha’s notes 2021

Example

• For fish : true +ve = 24

false 1-ve = 2+2+0=4

false -ve = 2+1+2=5

Example

© vibha’s notes 2021

Accuracy for multi - class correct

y predictions

← all

predictions

Precision for multi - class

P -- yptffp

Recall for Multi - Class

R=¥N

Q : find all metrics for the confusion matrix CD istve)

D

© vibha’s notes 2021

Accuracy : 122¥ = 54-78 %

P=TP_ = q÷µ,
= 42-86 't

TPTFP

R=,pT÷n = g÷s = 901 .

Fl score = 2×0.9×0.4286 = 58 -07%
0.9 to -4286

ROC - Receiver Operating characteristics

• Fit logistic regression curve to data (sigmoid)

• Blue : obese

Red : not obese

• For different threshold values
,
values of TP

,
FP
,
FN

,
TN will

vary
© vibha’s notes 2021

• Plot the values against threshold

d) Threshold --0.5

1-
**☒✗ Actual

i ^ ^^
obese

not

/
ObeseProbability

0.5 - - - - - -
i
- - - - - - -

of obesity obese 3 I

Predicted
0- •_•✗*

-
-☒
*

not 1 3
• • • • • • go

obese

weight

ii) Threshold --0.1

Actual
1- xx-☒* obese

not

,

' ^ ^^ Obese

Probability
as

'

obese 4 2
of obesity ☒ Predicted

not o 2

Oi -•_•✗_•*i=X-•-
-

-•
-
- - - - - obese

• • • Be

weight

iii> Threshold --0.9

1-
**☒✗ Actual

- - - - - -

g.
=
-n - na

obese
not

Probability
as

obese

of obesity i
obese 3 0

☒ Predicted
not 1 40- -••✗•*_-•*• • • • ••
obese

weight

© vibha’s notes 2021

TPR and FPR

•

x=y line : worst performance of fully random sample

• If curve falls below green line, more false positives than

random and such a classifier will not work

(1) 1)

(0,0)

• Lowering the threshold classifies more items as positive ,

increasing both FP and TP

• Points should be closer to 11,0) → TPR =/ and FPR=O

(no false positives)

• Evaluating logistic regression model with different thresholds
to compute points in Roc curve is inefficient

© vibha’s notes 2021

AUC- Area Under the Roc curve

• If AUC higher, curve is better

• Here , red area > blue area ⇒ red curve is better

d) Perfect (Aval)

1
A

TPR

0 FPR
?

Lii) Acceptable (0.5 < AUC < 1)

1
A

TPR

0 FPR '

>

Ciii) Predicting Random Classes

,
A

TPR

0 FPR
? © vibha’s notes 2021

Decision Trees

Example :
• Class of 40 students

,
the following trend is observed

• Girls of height C 5.5 ft
,
whose performance in class

tests is above average play cricket

☐ Girls of height > 5.5 ft , whose performance in class

tests is above average do not play cricket

• Girls < average do not play cricket

° Boys L 5.5ft play cricket

•

Boys > 5.5ft
,
whose performance is below average play

cricket

• Boys 7 5.5ft , whose performance is above average do

not play cricket

Gender

girl boy
" " }

" ""

Performance Height optimal ?
below above below above

avg avg 5.5ft
,

5.5ft how to
L J v

Height NO YES Performance find the

below above shortest
5.5ft 5.5ft

below above

L s avg , ing decision tree ?

YES NO YES NO

© vibha’s notes 2021

Real - Life Applications

1. Churn Analysis
2. sentiment Analysis
3. Classification / Regression Models

Decision Tree

° Learning method for approximating discrete - valued target
function in which the learnt function is represented by
a decision tree

° Each internal node and root node tests for an attribute

• Disjunction of conjunctions (or of ands)

• Unsupervised learning technique

ENTROPY

•••••••• •••••••• ••••••••

less medium high
entropy entropy entropy

100.1 . certain 75.1 . certain 25.1 . certain
that red ball that red ball that red ball

is picked is picked is picked

Game : pick out balls in a particular sequence one -by - one
with replacing

© vibha’s notes 2021

•••••••• ••••••••
BUCKET 1 I ✗ I ✗ I ✗ I = I

•••••••• ••••••••
BUCKET 2 0.75 ✗ 0.75 ✗ 0.75×0.25 = 0-105

••••••••
••••••••

BUCKET 3 0.5 ✗ 0.5 ✗ 0.5 ✗ 0.5 = 0-0625

Turning Products to sum

log cab) = toga -1 log b

•••• . . . •••••• . . . ••

'

p
' '

n

'

Entropy -- ECS)= _¥nlogz(¥n) -1 -¥n 1092 (Fn)
For Binary classification

© vibha’s notes 2021

cubvcs, CART
- Gini index

1133 Algorithm 4.g- (gain ratio) , candidate elimination

• construct decision trees top -down Cinvented by Ross Quinlan)

° Iterative Dichotomiser 3 (19847

• Decide which attribute should be tested for at the tree 's

root

• Descendant of root node created for every possible value
of root attribute and entire process repeated

• Greedy search for acceptable decision tree (no backtracking)

• Define statistical property information gain that measures

how well a given attribute separates training examples
according to their target classification

• Information gain calculates the reduction in the entropy
and measures how well a given feature classifies the

target class

• The feature with the highest information gain is selected
as the best one for that level

ENTROPY QUANTIFIED

• For binary classification (target column has only 2 classes),
entropy is 0 When all the values in the target column

are homogeneous and I when there are equal number

of values for both classes

© vibha’s notes 2021

• Entropy of dataset S

Entropy CS) = -É pi * log, Cpi) = HCS)
i=1

• C : total number of classes in target column

•

pi : probability of class i ratio of number of rows

with class i in the target column

Entropy (S) =
- P tog, p - n toga n

ptn pin pin pin

•

p : positive examples , n : negative examples

Information Gain

•••••••• •••.••••.• ••••••••

0 questions I question 2 questions

• Information gain GCS
,
A) of an attribute A relative to

collection of samples S is defined by

GCS , A) = Entropy IS) - ICA)

° Effectiveness of an attribute classifying training data

Average Information Entropy

ICAttribute> = E pit ni -
pin

Entropy (A)

© vibha’s notes 2021

Outlook Temp Humidity Windy Play tennis

Sunny High High Weak No

Sunny High High Strong No

Overcast High High Weak Yes

Rainy Medium High Weak Yes

Rainy Cool Normal Weak Yes

Rainy Cool Normal Strong No

Overcast Cool Normal Strong Yes

Sunny Medium High Weak No

Sunny Cool Normal Weak Yes

Rainy Medium Normal Weak Yes

Sunny Medium Normal Strong Yes

Overcast Medium High Strong Yes

Overcast High Normal Weak Yes

Rainy Medium High Strong No

Q : calculate entropy of the datasets

p= no .
Of yes = 9 n= no . of no : 5

Entropya) = -9¥ logs (¥5) - ¥51092 (9,5--5)

= 0.94

© vibha’s notes 2021

Outlook Temp Humidity Windy Play tennis

Sunny High High Weak No

Sunny High High Strong No

Overcast High High Weak Yes

Rainy Medium High Weak Yes

Rainy Cool Normal Weak Yes

Rainy Cool Normal Strong No

Overcast Cool Normal Strong Yes

Sunny Medium High Weak No

Sunny Cool Normal Weak Yes

Rainy Medium Normal Weak Yes

Sunny Medium Normal Strong Yes

Overcast Medium High Strong Yes

Overcast High Normal Weak Yes

Rainy Medium High Strong No

Q: calculate IGCS
,
Outlook)

Outlook

IGCS
,
outlook) = Entropy (S) - I Pi-ni-Entropycsoutioon.it

i Ptn

= 0.94 - (÷ ✗ [¥10942s) - F- 1094¥)]
In

,

+ ¥×f¥logz(É]+¥× [¥1094:-) -3=10943--17)
-Iast Tiny

= 0.94 - (¥ ✗ 0.971 -1,5-4×0.971) = 0.94-0.69 = 0.247

IGCS
,
Outlook) = 0.247

© vibha’s notes 2021

Q : construct 1173 Decision Tree for the table shown

a
, A2 OIP
Y B Y

Y B Y

Y W N

R W Y

R B N

R i B N

Entropy (5) = -3- logz (F) - 3- 1092¥) = I

6

Information gain on a
,

GCS , a.) = Entropy - Icap

= I - (3=(-23-1043-1-3109,13)
+ 3- (-131092%-2-310922-37)

= 1 - 0.918

= 0.081

Information gain on a
,

GCS.az?--Entropy-ICa2--1-(4-(-f-logz(2-u)-&logz(÷))
+ 2- (-1-2109211-2) -1-21092 (E))

© vibha’s notes 2021

M N O Y

A C X T

A C Z T

A D X T

A D Z T

B C X T

B C Z F

B D X F

B D Z F

=L - (46-+2-6)=1-1--0

i. First root = a
,

=) Second root =az

A ,

YY
Az Az

Bt Lw % Is
Y N Y N

Note : if direct attribute (entropy -- O) , decision tree

ends

Need to repeat for all levels of tree

Q : construct 1133 Tree for the following

© vibha’s notes 2021

Entropy G) = -5g log ,(E) -g- log, (3) = 0-9544

IGCS
,
M) = 0.9544 - (¥+0 + g-✗ ftlogzt,

-

f- 1092¥))
= 0.9544 - 0.4056

= 0.548

IGCSN) --0.9544- (¥xf¥loÉÉ¥)+
1- ftp.10921-z-1-ziogitz))
-

-
- 0.9544 - (0.4056-10-5) = 0.9544-0.9056

= 0.0487

IG(5,0) = 0.9544 - (4g ✗ 0.811 -14g ✗ 1)
--0-9544-0-9056

= 0.0487

i. First node : M

For M=A

Entropy Csm.-a) = 0

Decision Tree ends here

© vibha’s notes 2021

For M = B

Entropy CSm=B) = ¥ logzlq -3-4 1092¥
= 0.811

IG (Sm=p , N) = 0.811
- (12×1-112×0)

= 0.311

IG (Sm:B ,
0) = 0.811 - (Iz ✗ I +12×0)

= 0.311

i. Second node can be either one

M

A B

T N

C D

O F

✗ Z

T F

© vibha’s notes 2021

1173 and Outliers

• 1133 handles outliers

- IF statements to derive branches

•

Eg: missing salary for one employee
•

Ignores missing data
- Better than Finds and Candidate Elimination

Hypothesis Space teach

• 1133 searches a space of hypotheses for one that fits the

training examples

• Hypothesis space searched : set of possible decision trees

• Simple - to - complex , hill - climbing search through the hypothesis
space

• Disjunction of conjunctions

• Starts with empty tree and considers more elaborate hypotheses
with each step of selecting an attribute

• Evaluation function : information gain

• Find time complexity of constructing decision tree

e 1133 is greedy and performs no backtracking

• 1133 uses all training examples to make statistically based
decisions on how to refine the current hypothesis [unlike
Finds and candidate Eliminations)

© vibha’s notes 2021

Inductive Bias

• Basis by which it chooses a consistent hypothesis over
others

• Attribute that gives highest information gain is closest to

root lbest)

• Inductive bias of 1133 follows from its search strategy and not
the definition of its search space Cline Finds

,
Candidate Elim)

Issues

(a) Overfitting

• Perfectly classifies training data (more attributes → overfitting)

• As depth of tree grows , more overfitting

• Hypothesis h C- H is said to overfit a dataset if there

exists another hypothesis h
' C- H such that the error of h

is less than the error of h
'
on the training set , but

the error of h
'
is less than the error of h on the test

set

source : medium

• Shallow trees are less likely to overfit

• To make shallow
,
must prune Closs in accuracy)

© vibha’s notes 2021

Note : check paper on

drive link CBottom up) PRUNINGCBRIDT)

is Post - pruning
• Fully grow the tree and then selectively chop leaves

and aggregate them into a parent with the most common

value as predictor

di> Pre - pruning
• Halt tree growth when goodness of a split falls below
a certain threshold leg: min IG)

• Data loss ; not used as often

Post Pruning Pre Pruning

÷÷÷÷¥¥÷÷÷¥÷⇒÷÷÷i¥i¥*,¥¥¥ ¥¥¥i¥¥;÷¥↳•:É÷¥÷¥ ¥¥¥¥¥¥¥¥¥:¥¥⇒¥¥-⇐
- -

Approaches

• Use a separate set of examples (not training) to evaluate

post - pruning nodes

. statistical test to estimate whether expanding or pruning a
node is likely to produce an improvement beyond the training
set

• Explicit measure of the complexity for encoding training
examples and the decision tree ; halt growth when encoding
size minimised (Minimum Description Length)

© vibha’s notes 2021

replace with mostPost - Pruning: Reduced Error Pruning
• Prune as long as error decrease,

"mm" class

' once error increases
,
undo pruning step

• Post- pruning cmore commonly used)

train set validation set

1)

© vibha’s notes 2021

:
4)

☐

←
increase

© vibha’s notes 2021

https://medium.com/@pralhad2481/chapter-3-decision-tree-learning-part-2-issues-in-decision-tree-learning-babdfdf15ec3

5)

Final tree

Post Pruning- Rule Post Pruning - check prof Preet 's slides CL9)
• Uses conditionals (IF -THEN - ELSE)
• (

4.g- Uses

(b) Handling continuous attributes

• Define intervals

&

• How to define intervals?

interval boundary I = 604¥ = 54

interval boundary 2 =
© vibha’s notes 2021

(c) handling attributes with missing data

• can estimate based on other instances

• Eg: could use most common value - read Prof Preet 's slides

for more

(d) does not guarantee convergence

© vibha’s notes 2021

